E-Mail
IMAGE: Better understanding of the lifecycle accelerates the development of long-lasting, recyclable, and safe lithium-ion batteries.
view more
Credit: (Photo: Laila Tkotz, KIT)
Recycling and optimized resource cycles, second use, and knowledge-based cell design are expected to enhance sustainability and safety of lithium-ion batteries in future. The basis is now provided by process engineers and materials scientists of Karlsruhe Institute of Technology (KIT), who jointly study the battery lifecycle. The new research projects are carried out within the battery research clusters "greenBatt" and "BattNutzung" funded by the Federal Ministry of Education and Research (BMBF).
Battery cells of constant high performance can considerably reduce the ecological footprint of applications, such as electric mobility. In addition, second use of such cells is considered, e.g. in large networks of storage systems. But not all cells are suited for such "second-life scenarios." Long-term operation requires perfect interaction of a number of components and materials. "Permanent charging and discharging of the battery is inevitably associated with undesired side reactions," says Professor Hans-Jürgen Seifert from the Applied Materials Physics Department of KIT's Institute for Applied Materials. "When this has an adverse effect on the battery's behavior, it is referred to as degradation or aging. Degradation cannot be prevented completely, but it can be delayed and mitigated by an adequate cell design." Seifert and his team analyze degradation mechanisms in the highly reactive electrolyte by the associated gas formation. They carry out highly precise calorimetric measurements to balance heat quantities during battery operation and model them thermodynamically. The project is aimed at precisely predicting the cell behavior during use, Seifert explains: "With our models, safe and sustainable batteries can be developed in a knowledge-based manner and quick commercialization will be possible."