E-Mail
CLEVELAND - In a new paper, researchers describe their development of a near-real time spatial assessment of COVID-19 cases to help guide local medical responses to clusters of outbreaks of the virus at the local level.
The paper, entitled "Geographic monitoring for early disease detection (GeoMEDD)," appeared in the Dec. 10 issue of Nature
Scientific Reports and comes from researchers at Case Western Reserve University (CWRU) School of Medicine, University Hospitals (UH) Cleveland Medical Center, and Texas A & M University.
While developing a tracking system during the beginning stages of the COVID-19 pandemic, the authors realized that there was a need to refocus more traditional spatial mapping towards a more granular cluster detection methodology that provides syndromic surveillance, or early indicators of emergent disease by leveraging a health system's access to data streams from various sources which account for location and timing of cases.