The higher order corrections to the equations that describe nonlinear wave motion in shallow water are derived from the water wave equations. In particular, the extended cylindrical Korteweg-de Vries and Kadomtsev-Petviashvili equations—which include higher order nonlinear, dispersive, and nonlocal terms—are derived from the Euler system in (2+1) dimensions, using asymptotic expansions. It is thus found that the nonlocal terms are inherent only to the higher dimensional problem, both in cylindrical and Cartesian geometry. Asymptotic theory is used to study the resonant radiation generated by solitary waves governed by the extended equations, with an excellent comparison obtained between the theoretical predictions for the resonant radiation amplitude and the numerical solutions. In addition, resonant dispersive shock waves (undular bores) governed by the extended equations are studied. It is shown that the asymptotic theory, applicable for solitary waves, also provides an accurate estimate of the resonant radiation amplitude of the undular bore.