08 Apr 2021
A toxic brew of lysosomal lipids, reactive iron atoms, and oxidative stress can spell doom for human neurons. This is the upshot of the first-ever CRISPR screens at the genome-wide level in these cells. Researchers led by Martin Kampmann at the University of California, San Francisco, used the genome-editing tool to dial up or down expression of each protein-coding gene in the human neuronal genome. They uncovered a surprising connection between endolysosomal processing and the iron-dependent cell-death pathway called ferroptosis.
First genome-wide CRISPR screens in human neurons tweaks gene expression.
Endolyosomal function, oxidative stress, and iron homeostasis genes key to neuronal survival.