comparemela.com


2021-07-06 08:35:21 来源: 钛媒体APP
举报
分享至
分享至好友和朋友圈
  
  
文 | 探客Tanker,作者 | 王颖,编辑 | 蛋总
  如果说“AI将彻底改变我们的生活”,应该不会有人质疑,但若细问“AI最好的应用场景是什么?”或许每个人都有不同的答案。
  “我觉得人工智能最好的应用场景,毫无疑问是医疗的场景。”创新工厂董事长兼CEO李开复表示,他在“中国第五届医疗健康产业投资50人论坛年度峰会”的演讲进一步阐明了投资界对医疗AI的认可。
  事实上,医疗行业可以说是AI落地最早的行业之一,何出此言?
  需知,医疗AI的早期探索可以追溯到上世纪70年代,1972年英国利兹大学研发出了第一款医疗人工智能系统APPHELP;1978年,北京中医医院关幼波教授研发出了我国第一个医学专家系统——关幼波肝病诊疗程序,由此打开了我国医疗AI研发的序幕。
  
进入21世纪时,我国已累计研发出了上百个AI专家系统,但几乎所有的技术和系统都还是“纸上谈兵”,并没有被应用在临床实践中。
  最近几年,随着全球资本和技术的协同发展,加上各国政策的支持,医疗AI进入了快速发展时期——科技巨头纷纷成立“大健康事业部”布局医疗业务,创业公司扎堆涌入智能医疗设备和软件开发领域,AI在医疗领域的落地尝试愈发丰富,医学影像、辅助诊疗、健康管理、数字医疗服务等场景中的新技术、新产品正不断涌现。
  IDC统计数据显示,预计到2025年,全球人工智能应用市场总值将达1270亿美元,其中医疗行业将占总规模的五分之一。
  与此同时,医疗AI也吸引了国内大量资本的关注。沙利文咨询数据显示,2019到2020年,中国医疗AI领域共发生了77次融资事件,融资总额超过50亿元,其中2020年的35次融资总额已接近40亿。
  无论是单轮融资数额的大幅增加,还是医疗AI三类证的陆续发放,都在表明中国医疗AI行业正在成为发展最迅猛的赛道之一。根据国家药监局公开的审批情况,截至2021年5月,我国已有12项产品通过审核拿到了最高级别的“医疗器械三类证”。
  当前,在经历了论证“AI技术是否适用于医疗、医疗AI产品是否具有临床应用可行性、医疗AI是否适合规模化应用”的三个阶段后,我国医疗AI的探索正式进入了第四个阶段——获得市场准入资格后的商业化阶段。
  医疗AI发展火热,随着越来越多的产品获批上市,医疗AI企业开始正面迎接市场的挑战…...
  
01 AI最好的应用场景
  拿什么来证明医疗是AI最好的应用场景?
  
最直观的证据就是数据——多少AI产品获得了市场准入资格、多少医院正在使用、使用人次有多少、能达到什么效果……尤其是在医学影像和语音助手这两个领域中的AI技术,它们就如同医生的“千里眼”和“顺风耳”,其发展数据能在一定程度上回答上述问题。
  数据显示,2020年中国癌症新发病例为457万例,其中肺癌发病率最高达到了82万例,其次分别是结直肠癌56万例、胃癌48万例、乳腺癌42万例……作为疾病诊断的基础步骤,医学影像分析在临床中有大量应用,可辅助医生识别病灶,了解病情严重程度。
  研究数据表明,有近90%的医疗信息基于医学影像分析得出,其在医疗过程中的重要性不言而喻。而作为机器学习的重要分支,深度学习在图像分析、识别中取得了很好的应用效果,利用深度学习技术进行医学影像分析辅助诊断也成为了医疗AI落地的重点。
  从国家药监局公布的三类证获批情况可以看出,肺部影像分析和糖网筛查是目前国内医疗AI企业的研究重点,12项已通过审核的产品中有6个与这两项检测相关。
  
  
2020年11月,国家药监局审核通过了全国首个肺部影像AI产品——肺结节CT影像辅助检测软件。这款软件来自一家创立自2016年的医疗AI创企——推想医疗,在论证了AI医疗技术可行、产品化可行,并在医院规模化应用后,推想医疗拿到了药监局市场准入认证,这也是非常典型的AI医疗企业的发展历程。
  据「探客Tanker」了解,推想医疗已与全球20多个国家的400多家医疗机构合作。现在推想医疗已经集齐了欧盟CE、日本PMDA、美国FDA、中国NMPA四大认证,拿到了国际市场的准入资格。
  在新冠肺炎爆发初期,推想医疗与疫区医院共同研发了“肺部辅助诊断系统肺炎特别版”,在武汉同济医院、北京海淀医院、重庆医科大学附属第一医院投入使用,辅助一线医护人员进行诊断、量化评估、分诊和疫情监控。
  “推想医疗在中国、欧洲、日本、美国都拿到了市场准入资格,也就是说医疗AI这个概念已经经过了认证,它是一个具有临床实验安全性和有效性的医疗器械类产品。这也意味着,AI影像医疗设备可以在临床中得到广泛的使用。”推想医疗创始人兼董事长陈宽对「探客Tanker」表示。
  
除肺部AI之外,视网膜AI也是目前在医疗影像AI领域中走在最领先阵列的项目之一。
  很多人或许不了解,视网膜是我们人体唯一能够无创、直接观测到血管和神经的组织,蕴含着丰富的生物学特性和健康信息,我们可以通过视网膜来检测到诸多慢病情况。医学研究表明,视网膜能观察到上千种病变,常见的有200余种。
  2020年8月,鹰瞳Airdoc获得了国内AI眼底领域的第一张三类证。自2015年创立以来,鹰瞳科技在6年时间完成了7轮融资,融资总额超过8亿元人民币,其主营业务是AI视网膜影像识别早期检测、辅助诊断及健康风险评估方案。
  事实证明,AI视网膜影像识别这个方向是正确的。2020年11月,糖网AI三类证产品被写进了国家糖尿病防控指南。
这既是国家对医疗AI产品安全性、有效性的专业认定,也是推动国内医疗AI临床应用和深入发展的重大里程碑。
  
  图 / 鹰瞳提供
  据「探客Tanker」了解,目前鹰瞳Airdoc能对糖尿病、心梗等55种疾病或病变进行相应的检测或风险评估。鹰瞳Airdoc创始人、CEO张大磊表示,去年鹰瞳Airdoc的视网膜AI产品供检测了200多万人次,这其中临床科室和体检等医疗机构的贡献最大。
  他预计,今年检测量会达到1000-2000万人次,随着检测量的增加,单次检测的成本会逐渐降低,这些技术也将普惠到更多人。
  “视网膜是全身唯一可以无创直接观察血管和神经的部位,包含着丰富的健康信息,但往往只有资深的专科医生才能对这些疾病作出精准判断。如今,视网膜影像AI产品可以通过算法快速学习医生数十年的经验,做到快速、准确判断。”张大磊对「探客Tanker」表示。
  
除了影像,语音技术也是深度学习在医疗AI领域的重要探索之一。截至2020年年底,科大讯飞已在全国设立了200多个智慧医疗项目,累计进行了1.3亿次辅助诊断。NLP算法为医患沟通提供了智能交互能力,提高医生的诊疗效率的同时,也为患者提供了更便利的就诊形式。
  不止如此,科大讯飞研发的“智医助理”利用语音识别、自然语言处理技术,实现了智能问诊、智能交互功能。据「探客Tanker」了解,截至2020年年底,科大讯飞的智医助理已在北京、安徽、西藏、内蒙古、青海、新疆等地的3万余家基层医疗机构上线。
  此外,作为通用智能语音语言技术的提供商,思必驰也发现了AI医疗是一个“宝藏赛道”。疫情期间,思必驰研发的智能外呼机器人通过信息采集、健康教育、患者随访为医护人员极大提高了工作效率,每天处理百万级电话外呼,为疫情排查、病例分析提供了基础支持。
  据「探客Tanker」了解,思必驰推出的“1+2”软硬一体化智慧医疗解决方案,目前在医疗服务的各个阶段都有应用,医生可以基于智能语音语言技术和智能人机交互技术,在门诊预问诊、门诊电子病历、手术室智能助理、医技报告语音录入等环节提高工作效率。
  
  图 / 思必驰提供
  “针对医疗中人与人、人与机器沟通的场景,智能语音语言技术能够通过对知识的重构处理让沟通更便捷,这是传统信息化系统不能解决的问题。”思必驰智慧城市应用事业部副总经理邹平对「探客Tanker」表示。
  
02 迈过高技术的门槛
  众所周知,无论是医疗还是AI,都是门槛很高的行业,医疗AI产品要进入市场就必须面临层层考验。当前,医疗AI产品拿到了医疗器械三类证,只能证明这些技术和服务过关,而它能否和临床紧密结合才是接下来的重点,也是医疗AI企业必须迈过的难关。
  
AI进行医学影像分析的步骤,大致可以分为:检查病灶、分析病情、制定治疗方案。在这三个步骤中,任何一个环节都离不开与医生的紧密配合:
  首先,医生上传病人的影像资料后,AI可以自动筛查出病灶,结合医生的判断最大程度的减少漏诊;
  其次,AI与医生一样,都是通过大量的经验分析病人病情,经过大量数据对比后,AI可以结合以往病例帮助医生分析病情;
  最后,掌握病人基本情况和病情程度后,AI可以给出相应的治疗方案,但只能为医生提供参考。
  
  
无论何种AI模型,想要提高准确率都需要大量的数据和案例学习,而医疗AI面临的最大问题就是如何获取海量数据,并在保证数据安全的情况下训练AI。
  2020年3月,国家药监局对医疗影像AI产品的审核提出了具体要求,包括训练数据不得少于2000例、来源超过3家医疗机构、人群分布平均等。
  为此,很多企业选择了与医院合作的方式来获取真实数据,同时还能直接了解到医院的真实需求,毕竟对医疗行业来说,医生在临床中大量需要的技术就是刚需。
  “我们数据的来源主要有三个方面,一是世界权威研究机构发布的合法开源数据;二是合作医院、专家通过项目和课题合作获得的数据;三是实际应用中产生的真实数据。”鹰瞳Airdoc首席医学官陈羽中教授告诉「探客Tanker」。
  陈羽中强调,与医院合作获得的数据是产品研发中最重要的数据来源之一。另外,适应服务应用收集的真实患者数据会根据知情告知和相应条款,在被允许的情况下用来进行模型训练和产品迭代。
  “医院向我们提出需要AI帮助医生在筛查、诊断、治疗阶段实现哪些功能后,我们会根据医生的需求进行研发,而不是凭空想象研发出产品后再去找落地方向。”推想医疗创始人兼董事长陈宽对「探客Tanker」说。
  以上海某三甲医院为例,在医生提出具体需求的情况下,推想医疗为其提供了CT影像辅助检测软件。医生和AI同时对数千名患者的影像数据进行分析。结果表明,结节大小在10-30mm时,医生和AI都能准确判断,结节大小在3-6mm时,AI的表现要优于医生,结节大小在0-3mm时,这种趋势更加明显。
  
AI的优势在于,其识别精度要远超人类,且医生在大量阅片时会产生疲劳,也会影响对病情的判断。有了AI影像技术的辅助后,可大大地节约医生的时间及精力,提高医生的问诊效率和质量。
  近日,谷歌将Google Health团队的部分人员并入Fitbit,同时把剩余员工分为三个团队,其中一个就专注于医学影像领域的创新,使用算法筛查糖尿病视网膜病变,这也是Google Health目前最重要的研发方向之一,而这件事进一步说明了视网膜影像AI方向的重要性及发展潜力。

Related Keywords

China ,Beijing ,Chile ,Shanghai ,United Kingdom ,Zhao Kuo ,Qinghai Xinjiang ,City Application Division ,Google ,United Kingdom University Of Leeds ,Icahn Group ,Service Application ,Young ,Pratt Whitney ,Medical Service ,Vision China Text ,Kai Fu Lee ,Notes Medical ,United Kingdom University ,Beijing Chinese Medicine Hospital ,Medical Image ,Application Market ,China Medical ,Medi Cal ,Country Medical ,Step Medical Image ,United States China ,New Crown ,China Europe Japan United States ,Image Medical ,Medical Research ,Country Diabetes ,Milestone Figure ,Chile Medical ,March Country ,Chan Professor ,Blue Book ,Ebb Tide ,Application Dawn ,சீனா ,பெய்ஜிங் ,சிலி ,ஷாங்காய் ,ஒன்றுபட்டது கிஂக்டம் ,ழோ குவோ ,கூகிள் ,ஒன்றுபட்டது கிஂக்டம் பல்கலைக்கழகம் ஆஃப் லீட்ஸ் ,இக்ஹ்ன் குழு ,சேவை விண்ணப்பம் ,இளம் ,ப்ர்யாட் விட்னி ,மருத்துவ சேவை ,கை ஃபூ லீ ,ஒன்றுபட்டது கிஂக்டம் பல்கலைக்கழகம் ,பெய்ஜிங் சீன மருந்து மருத்துவமனை ,மருத்துவ படம் ,விண்ணப்பம் சந்தை ,சீனா மருத்துவ ,மேதி கலோரி ,ஒன்றுபட்டது மாநிலங்களில் சீனா ,புதியது கிரீடம் ,படம் மருத்துவ ,மருத்துவ ஆராய்ச்சி ,நாடு நீரிழிவு நோய் ,சான் ப்ரொஃபெஸர் ,நீலம் நூல் ,எப்ப் அலை ,

© 2025 Vimarsana

comparemela.com © 2020. All Rights Reserved.