Spintronics Technology Revolution Could Be Just a Hopfion Away
A decade ago, the discovery of quasiparticles called magnetic skyrmions provided important new clues into how microscopic spin textures will enable spintronics, a new class of electronics that use the orientation of an electron’s spin rather than its charge to encode data.
But although scientists have made big advances in this very young field, they still don’t fully understand how to design spintronics materials that would allow for ultrasmall, ultrafast, low-power devices. Skyrmions may seem promising, but scientists have long treated skyrmions as merely 2D objects. Recent studies, however, have suggested that 2D skyrmions could actually be the genesis of a 3D spin pattern called hopfions. But no one had been able to experimentally prove that magnetic hopfions exist on the nanoscale.
Date Time
Spintronics Technology Revolution Could Be Just a Hopfion Away
Artist’s drawing of characteristic 3D spin texture of a magnetic hopfion. Berkeley Lab scientists have created and observed 3D hopfions. The discovery could advance spintronics memory devices. (Credit: Peter Fischer and Frances Hellman/Berkeley Lab)
Adecade ago, the discovery of quasiparticles called magnetic skyrmions provided important new clues into how microscopic spin textures will enable spintronics, a new class of electronics that use the orientation of an electron’s spin rather than its charge to encode data.
But although scientists have made big advances in this very young field, they still don’t fully understand how to design spintronics materials that would allow for ultrasmall, ultrafast, low-power devices. Skyrmions may seem promising, but scientists have long treated skyrmions as merely 2D objects. Recent studies, however, have suggested that 2D skyrmions could actually be the genesis of
The spintronics technology revolution could be just a hopfion away eurekalert.org - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from eurekalert.org Daily Mail and Mail on Sunday newspapers.
CoCID project aims to develop soft X-ray microscope for visualizing cellular origin of diseases
CoCID (Compact Cell Imaging Device), a €5.7 million, four-year, pan-European research and innovation project, funded through Horizon 2020, has officially commenced. CoCID is focused on the development of a soft X-ray-based methodology that enables fast and inexpensive three-dimensional imaging of whole internal structure of intact biological cells.
The objective of CoCID is to develop a lab-scale, soft X-ray microscope, which can be used as a research tool to help scientists to understand the cellular origin of diseases.
The benefits of this compact imaging device will be demonstrated through a series of virology use cases that enable researchers to decipher critical changes in cell morphology induced by viruses, such as SARS-CoV-2, in their host cell with the aim to identify possible targets for therapy suppressing virus replication and/or cellular responses of relevance to the virus