Physicists Just Found The Lightest Known Form of Uranium, And It Has Unique Behaviors
MARA JOHNSON-GROH, LIVE SCIENCE
4 MAY 2021
Scientists have discovered a new type of uranium that is the lightest ever known. The discovery could reveal more about a weird alpha particle that gets ejected from certain radioactive elements as they decay.
The newfound uranium, called uranium-214, is an isotope, or a variant of the element, with 30 more neutrons than protons, one fewer neutron than the next-lightest known uranium isotope. Because neutrons have mass, uranium-214 is much lighter than more common uranium isotopes, including uranium-235, which is used in nuclear reactors and has 51 extra neutrons.
Study Shows Abnormal Enhancement of a-Particle Clustering in Uranium Isotopes
Written by AZoMApr 19 2021
In nuclear physics research, the discovery of new isotopes with extreme proton/neutron numbers is always fascinating. The α-decay in the heavy nuclei region is one of the ubiquitous decay modes and has a crucial role in the search for new isotopes.
The illustration of the enhanced α-particle preformation in
214,
216U deduced by the strong proton-neutron interaction. Image Credit: Zhiyuan Zhang.
But even after nearly a century of analyzing α-decay, researchers are still unable to perfectly explain how the α-particle forms at the nucleus surface before it is emitted.
Chinese Academy of Sciences
It is always exciting to find new isotopes with extreme neutron/proton numbers in nuclear physics research. In the region of heavy nuclei, α-decay is one of the pervasive decay modes and plays an essential role in searching for new isotopes. However, even after about a century of studying α-decay, scientists still cannot perfectly describe how the α-particle is formed at the surface of the nucleus before its emission.
In the α-decay process, the α-particle can be regarded not only as two protons plus two neutrons, but also as two proton-neutron pairs. Although previous studies have proved the importance of the pairing forces between the identical nucleons, it remains unclear whether the strong proton-neutron interactions have an impact on α-decay properties, especially in the heavy nuclear region.
A Lightweight Among Heavyweights
Physics 14, s43
×
Discovering new isotopes is like the stamp collecting of physics, but the consequences of adding to the set are much further reaching. A team of researchers using the Heavy Ion Research Facility in Lanzhou, China, has now expanded the collection with the discovery of the lightest uranium isotope to date [1]. The finding could have implications for our understanding of a particular type of radioactive decay that is still mysterious despite more than a century of work.
Uranium is an inherently unstable element. All of its isotopes are radioactive, with the most abundant ones having half-lives ranging from 150,000 to 4.5 billion years (roughly the age of Earth). Naturally occurring uranium contains between 140 and 146 neutrons. The newly discovered isotope has just 122, one fewer than the previous record for the element.