State-of-health (SOH) estimation of lithium-ion batteries is crucial for ensuring the reliability and safety of battery operation while keeping maintenance and service costs down in the long run. This study suggests a novel SOH estimation based on data pre-processing methods and a convolutional neural network (CNN)-Transformer framework. In data pre-processing, highly related features are selected by the Pearson correlation coefficient (PCC). Principal correlation analysis (PCA) is also employed to minimize the computational burden of the estimation model by eliminating redundant feature information. Then, all the features are normalized by the min-max feature scaling method, which will speed up the training process to reach the minimum cost function. After pre-processing, all the features are fed into the CNN-Transformer model. The dataset of the battery from the NASA is employed as a training and testing dataset to build the proposed model. The simulations indicate that the proposed
MIT and IBM researchers develop a new deep learning methodology that simulates counterfactual, time-varying and dynamic treatment strategies for critically ill patients, allowing doctors to choose the best course of action.