3·, gave rise to the first aromatic ring, benzene.
The current study is the first demonstration of the so-called “radical propargyl self-reaction” under astrochemical and combustion conditions. Using a high-temperature, coin-sized chemical reactor called the “hot nozzle,” the researchers simulated the high-pressure, high-temperature environment inside a combustion engine as well as the hydrocarbon-rich atmosphere of Saturn’s moon Titan, and observed the formation of isomers – molecules with the same chemical formula but different atomic structures – from two propargyl radicals leading up to the benzene ring.
The hot-nozzle technique, which co-senior author Musahid Ahmed, senior staff scientist in Berkeley Lab’s Chemical Sciences Division, adapted 10 years ago at Berkeley Lab’s Advanced Light Source (ALS) for synchrotron experiments, relies on vacuum ultraviolet (VUV) spectroscopy to detect individual isomers. The ALS is a type of particle accelerator known as a s
0 Shares
Illustration of a supernova explosion. Such swirling masses of matter gave shape to the earliest forms of carbon – precursors to molecules some scientists say are connected to the synthesis of the earliest forms of life on Earth. (Credit: NASA images/Shutterstock)
F
or nearly half a century, astrophysicists and organic chemists have been on the hunt for the origins of C
6H
6, the benzene ring – an elegant, hexagonal molecule comprised of 6 carbon and 6 hydrogen atoms.
Astrophysicists say that the benzene ring could be the fundamental building block of polycylic aromatic hydrocarbons or PAHs, the most basic materials formed from the explosion of dying, carbon-rich stars. That swirling mass of matter would eventually give shape to the earliest forms of carbon – precursors to molecules some scientists say are connected to the synthesis of the earliest forms of life on Earth.
E-Mail
IMAGE: Senior staff scientist Musahid Ahmed (left) and postdoctoral researcher Wenchao Lu near the Advanced Light Source (ALS) at Berkeley Lab on May 21, 2021. They used a special technique, which. view more
Credit: Thor Swift/Berkeley Lab
For nearly half a century, astrophysicists and organic chemists have been on the hunt for the origins of C
6H
6, the benzene ring - an elegant, hexagonal molecule comprised of 6 carbon and 6 hydrogen atoms.
Astrophysicists say that the benzene ring could be the fundamental building block of polycylic aromatic hydrocarbons or PAHs, the most basic materials formed from the explosion of dying, carbon-rich stars. That swirling mass of matter would eventually give shape to the earliest forms of carbon - precursors to molecules some scientists say are connected to the synthesis of the earliest forms of life on Earth.
SANTA CLARA, Calif., May 27, 2021 (GLOBE NEWSWIRE) AMD (NASDAQ: AMD) today joined the National Energy Research Scientific Computing Center (NERSC), Lawrence Berkeley National Laboratory (Berkeley Lab) and others in unveiling the new Perlmutter supercomputer powered by AMD EPYC™ 7003 Series processors. The new supercomputer at Berkeley Lab will provide four times the computational power currently available at NERSC,…