Durum wheat drought tolerance trials in Ciudad Obregon, Mexico, 2017. (Photo: Alfonso Cortés/CIMMYT)
Wheat constitutes 20% of all calories and protein consumed, making it a cornerstone of the human diet, according to the United Nations. However, hotter and drier weather, driven by a changing climate, threatens the global wheat supply. To address this threat, the Foundation for Food and Agriculture Research (FFAR) awarded a $5 million grant to the International Maize and Wheat Improvement Center (CIMMYT) to develop climate-resilient wheat. CIMMYT leads global research programs on maize and wheat, sustainable cropping systems and policies to improve farmers’ livelihoods. These activities have driven major gains in wheat variety improvement across the globe for decades; in the US alone, for example, over 50% of the wheat acreage is sown with CIMMYT-related varieties.
Delivering improved maize seed against all odds
Ugandan seed enterprise showcases the performance of stress-resilient maize varieties and engages agro-dealers as last mile seed merchants.
December 21, 2020
As one of the pioneer homegrown seed companies in Uganda, Farm Inputs Care Centre (FICA) has become one of the leading players in the seed sector value chain. Since its inception in 1999, it has played a significant role in variety development and maintenance, seed production, and processing, packaging and marketing.
The close linkages it has maintained with partners such as National Agriculture Research Organization (NARO)’s National Crops Resources Research Institute (NaCCRI) and the International Maize and Wheat Improvement Center (CIMMYT) have seen it acquire new hybrids for commercialization and production of early generation seed.
National breeding programs prepped to measure – and boost – genetic gains.
December 14, 2020
By adopting best practices and established modern tools, national agricultural research systems (NARS) are making data-driven decisions to boost genetic improvement. And they are measuring this progress through tracking and setting goals around “genetic gain.”
Genetic gain means improving seed varieties so that they have a better combination of genes that contribute to desired traits such as higher yields, drought resistance or improved nutrition. Or, more technically, genetic gain measures, “the expected or realized change in average breeding value of a population over at least one cycle of selection for a particular trait of index of traits,” according to the CGIAR Excellence in Breeding (EiB)’s breeding process assessment manual.