Researchers at the Beckman Institute have developed a new variation of an infrared microscope with analytical capabilities, rendering it effective for probing the chemical conformations of biomolecules. Their work was published in
E-Mail
IMAGE: Rice University s Carbon Hub is a zero-emissions research initiative to produce technologies that split hydrocarbons into hydrogen fuel and solid carbon materials that can be used to make buildings, cars,. view more
Credit: Photo by Tommy LaVergne/Rice University
HOUSTON - (March 8, 2021) - Carbon Hub, Rice University s zero-emissions research initiative, has awarded seed grants for six projects that will rapidly advance its vision for transforming the oil and gas sector into a leading provider of both clean hydrogen energy and solid carbon products that can be used in place of materials with large carbon footprints.
Six research teams from Rice University; the University of Cambridge, England; the University of California, Berkeley; the IMDEA Materials Institute, Madrid; the Polytechnic University of Milan; the Massachusetts Institute of Technology; and the University of Dayton Research Institute were selected for one-year grants in response to Carbon
2 transistor in an ESR sample tube. view more
Credit: University of Tsukuba
Tsukuba, Japan and Warsaw, Poland - Scientists from the University of Tsukuba and a scientist from the Institute of High Pressure Physics detected and mapped the electronic spins moving in a working transistor made of molybdenum disulfide. This research may lead to much faster computers that take advantage of the natural magnetism of electrons, as opposed to just their charge.
Spintronics is a new area of condensed matter physics that attempts to use the intrinsic magnetic moment of electrons, called spins, to perform calculations. This would be a major advance over all existing electronics that rely solely on the electron charge. However, it is difficult to detect these spins, and there are many unknowns regarding materials that can support the transport of spin-polarized electrons.
Credit: Lucas Schweickert
In a potential boost for quantum computing and communication, a European research collaboration reported a new method of controlling and manipulating single photons without generating heat. The solution makes it possible to integrate optical switches and single-photon detectors in a single chip.
Publishing in
Nature Communications, the team reported to have developed an optical switch that is reconfigured with microscopic mechanical movement rather than heat, making the switch compatible with heat-sensitive single-photon detectors.
Optical switches in use today work by locally heating light guides inside a semiconductor chip. This approach does not work for quantum optics, says co-author Samuel Gyger, a PhD student at KTH Royal Institute of Technology in Stockholm.