Researchers based in Beijing and Shenzhen, China, report that they have identified mutations in the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that may allow variant strains to avoid neutralization by monoclonal antibodies and convalescent blood plasma.
A team of scientists from the USA recently developed a recombinant “Angiotensin converting enzyme 2 (ACE2) Triple Decoy” that can trap SARS-CoV-2 and prevent its propagation inside the host cell.
Novel method can improve the detection of circulating tumor cells
Non-Small Cell Lung Cancer (NSCLC) is the most prevalent form of lung cancer, accounting for more than 80 percent of all lung cancer cases. Despite the aggressive nature of NSCLC, circulating tumor cells that lead to metastases often go undetected in the blood compared to breast, prostate, colorectal, and other cancers.
Now, scientists have developed a novel method to better detect the circulating tumor cells (CTCs) that are a telltale sign of metastases. The research was published in the journal
Proceedings of the National Academy of Sciences (
PNAS).
ISB and a collaborative team of researchers looked at hexokinase-2, or HK2, a key enzyme in glucose metabolism. A set of previous reports from our collaborator Dr. Herschman (co-author of the paper) and others revealed that cancer cells often rely on HK2 to elevate glucose metabolism to fuel their uncontrolled growth, making this enzyme a desirable target for test
A team of scientists from the USA and Canada has recently characterized the antibodies developed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in response to an mRNA-based coronavirus disease 2019 (COVID-19) vaccine.
Researchers identify human BCAS3 and C16orf70 as novel autophagic proteins
Autophagy is an intracellular degradation process of cytosolic materials and damaged organelles. Researchers at Ubiquitin Project of TMIMS have been studying the molecular mechanism of mitophagy, the selective autophagy process to eliminate damaged mitochondria. PINK1 (a serine/threonine kinase) and Parkin (a ubiquitin ligating enzyme: E3) work together to ubiquitylate the outer membrane proteins of damaged mitochondria, then ubiquitin chains are recognized as signals for autophagy degradation. Dysfunction of mitophagy causes a decrease in mitochondrial quality with overproduction of ROS, and is linked to neurodegenerative diseases like Parkinson s disease.