Robotic engineers from Harvard’s Wyss Institute and John A. Paulson School for Engineering and Applied Science (SEAS) have developed a laser-steering microrobot that can be integrated with existing endoscopic tools, which are used in minimally invasive surgeries. Their approach was reported in Science Robotics.
The ends of endoscopic tools must be highly flexible to enable visualization and manipulation of the surgical site in the target tissue. In the case of energy-delivering endoscopic tools, which allow surgeons to cut or dry tissues and stop internal bleeds, a heat-generating energy source is added to the end of the device.
Currently available energy sources, delivered via a fiber or electrode, limit surgical precision and can cause unwanted burns in adjacent tissue sections and smoke development. While laser technology would be an attractive solution, the laser beam needs to be precisely steered, positioned and quickly repositioned at the distal end of an endoscope, which c