comparemela.com

Latest Breaking News On - சுய நாம் ஹாய் - Page 1 : comparemela.com

SMART develops analytical tools to enable next-generation agriculture

Massachusetts Institute of Technology According to United Nations estimates, the global population is expected to grow by 2 billion within the next 30 years, giving rise to an expected increase in demand for food and agricultural products. Today, biotic and abiotic environmental stresses such as plant pathogens, sudden fluctuations in temperature, drought, soil salinity, and toxic metal pollution – made worse by climate change – impair crop productivity and lead to significant losses in agriculture yield worldwide. New work from the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and Temasek Life Sciences Laboratory (TLL) highlights the potential of recently developed analytical tools that can provide tissue-cell or organelle-specific information on living plants in real-time and can be used on any plant species.

Novel Analytical Tools Developed by SMART Key to Next-Generation Agriculture

Novel Analytical Tools Developed by SMART Key to Next-Generation Agriculture Written by AZoOpticsFeb 10 2021 Researchers from the Disruptive & Sustainable Technologies for Agricultural Precision (DiSTAP) Interdisciplinary Research Group (IRG) of Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and Temasek Life Sciences Laboratory (TLL), highlight the potential of recently developed analytical tools that are rapid and non-destructive, with a proof of concept through first-generation examples. The analytical tools are able to provide tissue-cell or organelle-specific information on living plants in real-time and can be used on any plant species. Species-independent analytical platforms can facilitate the creation of feedback-controlled high-density agriculture. Photo Credit: Betsy Skrip, Massachusetts Institute of Technology

Discovery allows early detection of shade avoidance syndrome

Credits: Image courtesy of the Singapore-MIT Alliance for Research and Technology. Previous image Next image Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) Interdisciplinary Research Group within the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and Temasek Life Sciences Laboratory (TLL) have discovered a way to use Raman spectroscopy for early detection of shade avoidance syndrome (SAS) in plants. The discovery can help farmers with timely intervention against SAS, leading to better plant health and crop yield. SAS is an adaptive response and an irreversible phenomenon, where plants reach for more light to overcome shaded conditions. It is commonly seen in plants experiencing vegetative shade, which is detrimental to plant health, as it leads to a number of issues including hindrance of leaf development, early flowering, and weakening of th

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.