Science s COVID-19 reporting is supported by the Pulitzer Center and the Heising-Simons Foundation
Trucks on their way to France queue in southeastern England on 21 December 2020 after the border was closed in an attempt to stop the spread of a new SARS-CoV-2 variant.
PHOTO: DAN KITWOOD/GETTY IMAGES
On 8 December 2020, a small group of scientists in the United Kingdom logged on for a regular Tuesday videoconference about the spread of the pandemic coronavirus. The discussion focused on Kent, a county in southeastern England that was seeing increasing transmission of SARS-CoV-2, even as the rest of the country was managing to curb the spread. Because investigations had not found any obvious causes no big workplace outbreaks or changes in people s behavior several researchers had been asked to look at viral genomes from the region.
Science’
s COVID-19 reporting is supported by the Pulitzer Center and the Heising-Simons Foundation.
In June, Ravindra Gupta, a virologist at the University of Cambridge, heard about a cancer patient who had come into a local hospital the month before with COVID-19 and was still shedding virus. The patient was being treated for a lymphoma that had relapsed and had been given rituximab, a drug that depletes antibody-producing B cells. That made it hard for him to shake the infection with SARS-CoV-2.
Gupta, who studies how resistance to HIV drugs arises, became interested in the case and helped treat the patient, who died in August, 101 days after his COVID-19 diagnosis, despite being given the antiviral drug remdesivir and two rounds of plasma from recovered patients, which contained antibodies against the virus. When Gupta studied genome sequences from the coronavirus that infected the patient, he discovered that SARS-CoV-2 had acquired several mutations that might have allowed