5. Juli 2021
Der Physiker Stephen Hawking hat vor 50 Jahren ein Theorem zur Fläche des Ereignishorizonts Schwarzer Löcher aufgestellt. Jetzt wurde es betätigt. © keanu2/ Getty images
Nach 50 Jahren bewiesen: 1971 postulierte der britische Physiker Stephen Hawking, dass der Ereignishorizont eines Schwarzen Lochs nie schrumpfen kann. Jetzt liefern Gravitationswellen den ersten Beobachtungsbeweis für dieses Theorem. Denn der Vergleich der Wellenmuster vor und nach der Verschmelzung zweier Schwarzer Löcher zeigt, dass der Ereignishorizont hinterher mehr als die Summe der beiden Vorgänger umfasst – genau das hatte Hawking vorhergesagt.
Der 2018 gestorbene Physiker Stephen Hawking hat unsere Sicht auf Schwarze Löcher geprägt wie kein anderer. Schon in den 1970er Jahren stellte er mehrere fundamentale Theorien zu diesen kosmischen Singularitäten auf, darunter die nach ihm benannte Hawking-Strahlung. Auch die Frage, wie der Ereignishorizont beschaffen ist und ob dahinter wirkl
Gravitational Waves Confirm Stephen Hawking -- One Day They May Reveal Unknown Objects
dailygalaxy.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from dailygalaxy.com Daily Mail and Mail on Sunday newspapers.
Hawking s black hole theory is confirmed by observation for the first time
archyde.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from archyde.com Daily Mail and Mail on Sunday newspapers.
Massachusetts Institute of Technology
There are certain rules that even the most extreme objects in the universe must obey. A central law for black holes predicts that the area of their event horizons – the boundary beyond which nothing can ever escape – should never shrink. This law is Hawking’s area theorem, named after physicist Stephen Hawking, who derived the theorem in 1971.
Fifty years later, physicists at MIT and elsewhere have now confirmed Hawking’s area theorem for the first time, using observations of gravitational waves. Their results appear today in Physical Review Letters.
In the study, the researchers take a closer look at GW150914, the first gravitational wave signal detected by the Laser Interferometer Gravitational-wave Observatory (LIGO), in 2015. The signal was a product of two inspiraling black holes that generated a new black hole, along with a huge amount of energy that rippled across space-time as gravitational waves.
Credits: Credit: Simulating eXtreme Spacetimes (SXS) project. Courtesy of LIGO
Previous image
Next image
There are certain rules that even the most extreme objects in the universe must obey. A central law for black holes predicts that the area of their event horizons the boundary beyond which nothing can ever escape should never shrink. This law is Hawking’s area theorem, named after physicist Stephen Hawking, who derived the theorem in 1971.
Fifty years later, physicists at MIT and elsewhere have now confirmed Hawking’s area theorem for the first time, using observations of gravitational waves. Their results appear today in