Home > Press > 3D design leads to first stable and strong self-assembling 1D nanographene wires
Schematic illustration of hierarchical structures of carbon nanofiber bundles made of bitten warped nanographene molecules.
CREDIT
NINS/IMS
Abstract:
Nanographene is flexible, yet stronger than steel. With unique physical and electronic properties, the material consists of carbon molecules only one atom thick arranged in a honeycomb shape. Still early in technological development, current fabrication methods require the addition of substituents to obtain a uniform material. Additive-free methods result in flimsy, breakable fibers until now.
3D design leads to first stable and strong self-assembling 1D nanographene wires
Tokyo, Japan | Posted on April 6th, 2021
E-Mail
IMAGE: Schematic illustration of hierarchical structures of carbon nanofiber bundles made of bitten warped nanographene molecules. view more
Credit: NINS/IMS
Nanographene is flexible, yet stronger than steel. With unique physical and electronic properties, the material consists of carbon molecules only one atom thick arranged in a honeycomb shape. Still early in technological development, current fabrication methods require the addition of substituents to obtain a uniform material. Additive-free methods result in flimsy, breakable fibers until now.
An international team of researchers has developed self-assembling, stable and strong nanographene wires. The results were published on March 24 in
Journal of the American Chemical Society.