comparemela.com

Card image cap

Colour centres in diamond have emerged as a leading solid-state platform for advancing quantum technologies, satisfying the DiVincenzo criteria1 and recently achieving quantum advantage in secret key distribution2. Blueprint studies3–5 indicate that general-purpose quantum computing using local quantum communication networks will require millions of physical qubits to encode thousands of logical qubits, presenting an open scalability challenge. Here we introduce a modular quantum system-on-chip (QSoC) architecture that integrates thousands of individually addressable tin-vacancy spin qubits in two-dimensional arrays of quantum microchiplets into an application-specific integrated circuit designed for cryogenic control. We demonstrate crucial fabrication steps and architectural subcomponents, including QSoC transfer by means of a ‘lock-and-release’ method for large-scale heterogeneous integration, high-throughput spin-qubit calibration and spectral tuning, and efficient spin state preparation and measurement. This QSoC architecture supports full connectivity for quantum memory arrays by spectral tuning across spin–photon frequency channels. Design studies building on these measurements indicate further scaling potential by means of increased qubit density, larger QSoC active regions and optical networking across QSoC modules. A modular quantum system-on-chip architecture integrates thousands of individually addressable spin qubits in two-dimensional quantum microchiplet arrays into an integrated circuit designed for cryogenic control, supporting full connectivity for quantum memory arrays across spin–photon channels.

Related Keywords

United States , America , Bonilla Ataides , Nano Lett , A Nuclear , International Electron Devices Meeting , Optical Society Of America , Quantum Inf , Solid State Circuits , Quantum Communication , Electron Devices Meeting , Optical Society ,

© 2024 Vimarsana

comparemela.com © 2020. All Rights Reserved.